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Due to the frequency–energy dependence of nonlinear oscillations, nonlinear dynamical

absorbers present interesting properties for mitigating unwanted vibrations in

mechanical systems. Unlike the tuned mass damper, the functional form of a nonlinear

absorber is not known a priori and must be determined. This short note addresses this

structure. Numerical simulations demonstrate that the determination of an adequate

functional form may be directly linked to the frequency–energy dependence of the

primary structure.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Realizing the limitations of the tuned mass damper (TMD) [1,2], nonlinear vibration absorbers have been developed for
their ability to enlarge the suppression bandwidth. The first studies date back to Roberson [3], Pipes [4] and Arnold [5].
Since then, nonlinear absorbers have received increasing attention in the literature (see, e.g., the autoparametric vibration
absorber [6–8] and the nonlinear energy sink [9–12]). One potential limitation of nonlinear vibration absorbers is that their
performance depends critically on the total energy present in the system or, equivalently, on the amplitude of the external
forcing. This stems from the frequency–energy dependence of nonlinear oscillations, which is one typical feature of
nonlinear dynamical systems.

Because the functional form of a nonlinear absorber is not known a priori, its determination is an important issue.
Although other functional forms were examined in the literature, a cubic stiffness is often chosen for the realization of a
nonlinear absorber [13]. In this context, Viguié et al. [14] showed that, through an adequate selection of the functional form,
a nonlinear absorber can mitigate the vibrations of a specific mode of a nonlinear primary structure in a wide range of
excitation amplitudes. A frequency–energy-based tuning methodology was proposed, such that the nonlinear absorber
possesses the same frequency–energy dependence as that of the considered mode of the primary structure. The objective of
this short note is to further investigate the effectiveness of the proposed methodology using detailed numerical simulations.
Specifically, we propose to compare the performance of dynamical absorbers presenting different functional forms.

The paper is organized as follows. In Section 2, the performance of three absorbers, namely a TMD, an absorber with
hardening nonlinearity and an absorber with softening nonlinearity, is compared when these devices are coupled to a
primary structure possessing hardening nonlinearity. Once an appropriate functional form is determined, the optimal
value of the nonlinear coefficient is sought, which is carried out in Section 3. To further validate the proposed methodology,
a primary structure possessing softening nonlinearity is considered in Section 4. The conclusions of the present study are
summarized in Section 5.
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R. Viguié, G. Kerschen / Journal of Sound and Vibration 329 (2010) 5225–52325226
2. Determination of the functional form of the dynamical absorber

The system considered herein is composed of a nonlinear single-degree-of-freedom (SDOF) system, which is coupled to
three absorbers, namely a TMD, an absorber with hardening nonlinearity and an absorber with softening nonlinearity
(see Figs. 1(a)–(c), respectively). Without lack of generality, the primary system is chosen to be essentially nonlinear
Fig. 1. Essentially nonlinear oscillator coupled to (a) a tuned mass damper; (b) a nonlinear hardening absorber and (c) a nonlinear softening absorber.
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Fig. 2. Backbone curve of the nonlinear primary structure.
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(i.e., the restoring force is realized using a cubic stiffness); its backbone curve is represented in the frequency–energy plot
(FEP) of Fig. 2. A light-weight absorber is considered for obvious practical reasons, and slight damping is introduced to
induce energy dissipation. The system parameters are listed in Table 1. The system is subjected to an impulsive load
modeled as a nonzero initial condition on the velocity of the primary system _x1ð0Þa0,x1ð0Þ ¼ x2ð0Þ ¼ _x2ð0Þ ¼ 0.

The objective consists in determining which absorber leads to effective vibration mitigation for various energy levels.
The performance and robustness of a specific absorber are assessed in this study through three-dimensional plots
representing the energy dissipated in the absorber against two parameters, namely the nonlinear stiffness of the primary
system and the impulse amplitude. The latter parameter is in direct relation with the energy injected in the structure,
whereas the former parameter is representative of a potential mistuning (due to, for instance, the ageing of the structure).
Table 1
System parameters.

Parameter Units Value

m1 (kg) 1

kprim (N/m3) 1

c1 (Ns/m) 0.002

m2 (kg) 0.05

c2 (Ns/m) 0.002

Fig. 3. Energy dissipation in a TMD coupled to a nonlinear oscillator. (a) klin=0.01 N/m, (b) klin=0.1 N/m and (c) klin=1 N/m. Subfigures (I) depict the

backbone curve of the nonlinear oscillator (blue solid line) and the TMD (red dashed line). Subfigures (II) illustrate the percentage of energy dissipated in

the absorber against the nonlinear stiffness of the primary structure kprim and the impulse magnitude _x1ð0Þ. Subfigures (III) represent two-dimensional

projections of subfigures (II). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.1. Performance of the tuned mass damper

A TMD is first coupled to the primary structure. It seems that no formal procedure exists in the literature for the design
of a TMD coupled to a nonlinear oscillator. In this context, a parametric approach is adopted by considering three
different (linear) stiffnesses for the TMD. The dynamics of the resulting system is shown in Fig. 3. Subfigures (I) clearly
show the frequency mismatch: the frequency of the primary structure increases with energy due to the hardening
nonlinearity, whereas the TMD does not exhibit any frequency–energy dependence. This frequency mismatch
is also evident in Subfigures (II) and (III) through the variability of the energy dissipated in the TMD with the
impulse magnitude.

In addition, Fig. 3 highlights that there is a correspondence between the localization of the region where the two
backbones intersect in Subfigures (I) and the localization of the region of high energy dissipation in Subfigures (II) and (III).
Even though a quantitative analysis is not available so far, a qualitative analysis can be performed (using Figs. 4(a–c)) to
explain this feature. Fig. 4(a) depicts the two intersecting points occurring between the frequency–energy dependence of
the TMD (dashed black line) and the one of the nonlinear oscillator with two different nonlinear stiffness values
(kprim=1 (N/m3) in solid red line and kprim=10 (N/m3) in dashed-dotted blue line). The direct neighborhood of the
intersecting points (resonant points) is highlighted by black dotted circles. In these regions, both oscillators may engage in
resonance enabling strong interactions through beating phenomena, which results in high energy dissipation in the
absorber. The intersecting points are located at specific energy levels (a and b) that can be directly related to the initial
impulse magnitude _x1ð0Þ through the kinetic energy (that equals the total energy in the system at t=0). At this stage, it
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Fig. 4. Subfigure (a) depicts the backbone curve of the nonlinear oscillator (kprim=10 (N/m3): blue dashed-dotted line/kprim=1 (N/m3): red solid line) and

the TMD (black dashed line). The black dotted circles show supposed zones of influence where strong interactions between the NL oscillator and the TMD

occur. Subfigure (b) illustrates the percentage of energy dissipated in the absorber against the nonlinear stiffness of the primary structure kprim and the

impulse magnitude _x1ð0Þ. Subfigure (c) represents two-dimensional projections of subfigure (b). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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appears that: (i) a high energy dissipation level occurs at specific couples ( _x1ð0Þ,kprim) and (ii) because aob, the high
energy dissipation level occurs at a lower impulse magnitude ( _x1ð0Þ) for kprim=10 (N/m3) than for kprim=1 (N/m3).
Subfigure 4(c) depicts this last feature. A high energy dissipation region is localized around _x1ð0Þ ¼ 9 ðm=sÞ for kprim=
10 (N/m3), whereas it is located around _x1ð0Þ ¼ 30 ðm=sÞ forkprim=1 (N/m3).

As a concluding remark, the variation of the nonlinear stiffness kprim induces changes in the backbone curve of the
primary system and, consequently, in the localization of the resonance region. This gives rise in Subfigures (II) and (III) to a
locus of points (kprim, _x1ð0Þ) for which high energy dissipation occurs.

2.2. Performance of the absorber with softening nonlinearity

An absorber with softening nonlinearity is now attached to the nonlinear SDOF system. The functional form obeys a cubic
root law, and three different numerical values ksoft=0.01, 0.1 and 1 ðN=m1=3Þ are considered. The results are presented in Fig. 5.
These results are qualitatively similar to those of the previous section, and the same conclusions can be drawn. Specifically, the
frequency mismatch is also observed for this softening absorber, which results in energy-dependent performance.

2.3. Performance of the absorber with hardening nonlinearity

The performance of the TMD and of the nonlinear softening absorber depends critically on the total energy present in
the system. This section investigates if an absorber possessing a backbone curve similar to that of the primary system can
resolve this limitation. Two different exponents (i.e., 3 and 7) for the nonlinearity are examined, and the results are
Fig. 5. Energy dissipation in an absorber with softening nonlinearity coupled to a nonlinear oscillator. (a) ksoft=0.01 N/m1/3, (b) ksoft=0.1 N/m1/3 and

(c) ksoft=1 N/m1/3. Subfigures (I) depict the backbone curve of the nonlinear oscillator (blue solid line) and of the softening absorbers: red dashed line for

ksoft=0.01 N/m1/3, black dotted line for ksoft=0.1 N/m1/3, violet alternated line for ksoft=1 N/m1/3. Subfigures (II) illustrate the percentage of energy dissipated

in the absorber against the nonlinear stiffness of the primary structure kprim and the impulse magnitude _x1ð0Þ. Subfigures (III) represent two-dimensional

projections of subfigures (II). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 6. Energy dissipation in an absorber with hardening nonlinearity coupled to a nonlinear oscillator. Subfigures (a) and (b) correspond to a nonlinear

stiffness characterized by an exponent 7 with khard equal to 100 N/m7 and 1 N/m7, respectively. Subfigures (c) correspond to a cubic stiffness with

khard=1 N/m3. Subfigures (I) depict the backbone curve of the nonlinear oscillator (blue solid line) and of the hardening absorbers: red dashed line for

khard=100 N/m7, black dotted line for khard=1 N/m7, violet alternated line for khard=1 N/m3. Subfigures (II) illustrate the percentage of energy dissipated in

the absorber against the nonlinear stiffness of the primary structure kprim and the impulse magnitude _x1ð0Þ. Subfigures (III) represent two-dimensional

projections of subfigures (II). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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depicted in Fig. 6. Subfigures (a) and (b) correspond to an exponent equal to 7 with khard equal to 100 and 1 N/m7,
respectively. Even though the backbone curves of these absorbers do not match that of the primary system, the hardening
behavior seems to induce positive effects. In Subfigures (a-(II–III)), a rather smooth and well-defined zone of high energy
dissipation is identified. This zone is retrieved in Subfigures (b-(II–III)) at lower values of kprim and spreads over a wider
range of excitation levels. Subfigures (c) display the results obtained with a cubic absorber possessing the same functional
form as that of the primary system. Clearly, there exists a smooth region where high energy dissipation occurs for all
impulse magnitudes, which makes this absorber amplitude robust. This result is interesting, because it validates the
qualitative tuning methodology proposed in [14].
3. Determination of the nonlinear coefficient kcub

The previous section has highlighted that the functional form of the absorber is to be chosen according to the frequency–
energy dependence of the primary structure. The nonlinear coefficient of the absorber is still to be determined to maximize both
performance and robustness. Figs. 7(a)–(c) depict the results for three different nonlinear coefficients kcub. It confirms that all three
absorbers are effective; i.e., they can dissipate a large amount of the input energy for a certain range of values of the nonlinear
coefficient kprim. For decreasing values of kcub, a contraction and a translation of the high energy dissipation region is observed.

Because the nominal value of the coefficient of the primary system is kprim=1 (N/m3) (see Table 1), it seems that an adequate
value for the cubic stiffness is kcub=0.01 (N/m3). Although they are not in complete correspondence, Fig. 7(c-I) displays that the



Fig. 7. Energy dissipation in an absorber with cubic nonlinearity coupled to a nonlinear oscillator. (a) kcub=0.1 N/m3, (b) kcub=0.05 N/m3 and (c)

kcub=0.01 N/m3. Subfigures (I) depict the backbone curve of the nonlinear oscillator (blue solid line) and of the absorbers: red dashed line for kcub=0.1

N/m3, black dotted line for kcub=0.05 N/m3, violet alternated line for kcub=0.01 N/m3. Subfigures (II) illustrate the percentage of energy dissipated in the

absorber against the nonlinear stiffness of the primary structure kprim and the impulse magnitude _x1ð0Þ. Subfigures (III) represent two-dimensional

projections of subfigures (II). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
System parameters.

Parameter Units Value

m1 (kg) 1

kprim ðN=m1=3Þ 1

c1 (Ns/m) 0.002

m2 (kg) 0.05

ksoft ðN=m1=3Þ 0.105

c2 (Ns/m) 0.002
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backbone curves of the two oscillators exhibit a similar frequency–energy dependence. More than 90% of the energy initially
imparted in the primary oscillator is dissipated in the nonlinear absorber, and a remarkable result is that the performance does
not depend on impulse magnitude. We note that these numerical results are in complete agreement with the analytical
developments of Ref. [14].
4. Validation of the results for a primary oscillator with softening nonlinearity

A primary oscillator with softening nonlinearity (cubic root) is now examined. According to the previous developments,
the nonlinear absorber should also present a nonlinearity with a cubic root. The system parameters are listed in Table 2.
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Fig. 8. Energy dissipation in an absorber with softening nonlinearity coupled to a nonlinear softening oscillator. (a) Percentage of energy dissipated in the

absorber against the nonlinear stiffness of the primary structure kprim and the impulse magnitude _x1ð0Þ; (b) two-dimensional projection.
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Figs. 8(a–b) show that high energy dissipation is realized around kprim ¼ 1 ðN=m1=3Þ and that the performance does not
depend on the impulse magnitude.

5. Conclusion

This short note addressed the determination of an appropriate functional form of a nonlinear dynamical absorber when
it is coupled to a nonlinear primary structure. The main finding is that the backbone curves of the primary system and of
the absorber should exhibit a similar, though not identical, frequency–energy dependence. As a result, the absorber is
capable of effectively mitigating the unwanted vibrations of the primary system in a wide range of excitation amplitudes.
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[14] R. Viguié, G. Kerschen, Nonlinear vibration absorber coupled to a nonlinear primary system: a tuning methodology, Journal of Sound and Vibration

326 (2009) 780–793.


	On the functional form of a nonlinear vibration absorber
	Introduction
	Determination of the functional form of the dynamical absorber
	Performance of the tuned mass damper
	Performance of the absorber with softening nonlinearity
	Performance of the absorber with hardening nonlinearity

	Determination of the nonlinear coefficient kcub
	Validation of the results for a primary oscillator with softening nonlinearity
	Conclusion
	Acknowledgment
	References




